Галилей и его ошибки

Кто не знает великого итальянского ученого эпохи Возрождения по фамилии Галилей? Развитие механики в доньютоновскую эпоху как науки связано с его именем. Наибольшей заслугой Галилея как ученого-механика было то, что он первым заложил основы научной динамики, нанесшей сокрушительный удар по динамике Аристотеля. Галилей называл динамику "наукой о движении относительно места". Его сочинение "Беседы и математические доказательства, касающиеся двух новых наук" состоит из трех частей: первая часть посвящена равномерному движению, вторая – равномерно ускоренному, третья – принужденному движению брошенных тел. В античной механике термина "скорость" не было. Рассматривались более или менее скорые движения, а также "равноскорые", но количественно характеристики этих движений в виде скорости не существовало. Галилей впервые подошел к разрешению вопроса о равномерном и ускоренном движении массивных тел и рассмотрел движение тел по инерции. Но были и ошибки Галилея.

Галилею приписывают открытие закона инерции. Делают это даже в учебниках – школьных и не только. Закон этот Галилей выражал так: "Движение тела, на которое не действуют силы (конечно, внешние) либо равнодействующая их равна нулю, является равномерным движением по окружности". Так, по мнению Галилея, двигались небесные тела, "предоставленные самим себе". На самом же деле движение по инерции, как известно, может быть только равномерным и прямолинейным. Что же касается небесных тел, то их с этого движения "сбивает" внешняя сила – сила всемирного тяготения. Рассматривая взгляд Галилея на инерцию, убеждаемся в его неправомерности: ошибка в рассуждениях возникла из-за того, что Галилей не знал о законе всемирного тяготения, открытого позже Ньютоном.

Доказывая принцип относительности, Галилей утверждал, что если корабль движется равномерно и без качки (рис. 1), то никаким механическим экспериментом нельзя обнаружить этого движения. Он предлагал мысленно разместить в трюме корабля сосуды с вытекающей из них водой, с плавающими в них рыбками, летающих мух и бабочек и утверждал, что стоит ли корабль или движется равномерно – их действия не изменяются. Не надо при этом забывать, что движение корабля не прямолинейное, а круговое (правда, по окружности большого радиуса, какой является то или иное сечение Земли).

Корабль Галилея

Рис. 1. Корабль Галилея.

Сейчас мы знаем, что в системе, движущейся по кривой, какой является и окружность, невозможно соблюдение закона инерции: эта система не является инерциальной. Действительно, в принципе Галилея величина скорости относительного движения не играет роли, как и скорость движения одной инерциальной системы относительно другой. Вот и очередная ошибка.

Но если кораблю придать первую космическую скорость (8 км/с), то все предметы в его трюме, как и сам корабль, сделаются невесомыми. Механический эксперимент, проведенный с достаточной точностью, покажет, что и для реальных скоростей движения перемещения тел в трюме движущегося корабля и корабля неподвижного будут различаться между собой. Более того, движение тел изменится, если корабль будет идти с одной и той же скоростью, но разными курсами – допустим, по меридиану и по экватору. Не только движущиеся в трюме тела будут сбиваться с предполагаемой траектории, но и сам корабль в Северном полушарии будет относить вправо по курсу, а в Южном – влево. Интересно, что эти отклонения, вызванные вращением Земли как неинерциальной системы, не зависят даже от направления движения и описываются силой Кориолиса.

В другой своей работе – "Диалог о двух главнейших системах мира…" – Галилей утверждает, что мир есть тело в высшей степени совершенное, и в отношении его частей должен господствовать наивысший и наисовершеннейший порядок. Из этого Галилей делает вывод, что небесные тела по своей природе не могут двигаться прямолинейно, поскольку если бы они двигались прямолинейно, то безвозвратно удалялись бы от своей исходной точки и первоначальное место для них не было бы естественным, а части Вселенной не были бы расположены в "наисовершеннейшем порядке". Следовательно, небесным телам недопустимо менять места, т. е. двигаться прямолинейно. Исчезни вдруг закон всемирного тяготения, это и случилось бы! Именно он удерживает небесные тела в устойчивом движении, не допуская их хаотического разбегания. Кроме того, прямолинейное движение бесконечно, ибо прямая линия бесконечна, а стало быть, неопределенна. Галилей считал, что по самой сути природы невозможно, чтобы что-либо двигалось по прямой линии к недостижимой цели. Снова ошибка Галилея!

Но коль скоро порядок достигнут и небесные тела размещены наилучшим образом, невозможно, чтобы в них оставалась естественная склонность к прямолинейному движению, в результате которого они отклонились бы от надлежащего места. Как утверждал Галилей, прямолинейное движение может только "доставлять материал для сооружения", но, когда последнее готово, оно или остается неподвижным, или если и обладает движением, то только круговым. Более того, Галилей утверждал, что если тело бросить скользить как по льду по горизонтальной плоскости, то, упав с нее, тело обязательно пересечет свою траекторию с центром Земли (рис. 2). Но так как движение по инерции все время удаляет брошенное тело от этой траектории, то оно никак не может пересечь свой путь с центром Земли. Это очень распространенная ошибка, встречающаяся даже в современных учебниках!

Падение движущихся по касательной к поверхности Земли тел: а – по Галилею; б – по Ньютону

Рис. 2. Падение движущихся по касательной к поверхности Земли тел: а – по Галилею; б – по Ньютону.

Кроме того, движение по горизонтальной скользкой плоскости таково, что тело, отходя от точки пересечения кратчайшего радиуса Земли с этой плоскостью, начинает удаляться от центра Земли. Значит, и приближаясь, и удаляясь от центра Земли, тело не может двигаться равномерно, поскольку на него все время (кроме одной точки в центре Земли) будет действовать сила.

Как видим, Галилей в своем воззрении на инерцию, а, следовательно, и на механику вообще, ошибался очень существенно. Формулировку законов инерции, очень близкую к ньютоновской и принятую с незначительными изменениями в современной механике, дал французский философ и математик Р. Декарт, современник Галилея. В своей книге "Начала философии", вышедшей в свет в 1644 г., он так формулирует законы инерции. Первый закон: "Всякая вещь продолжает по возможности пребывать в одном и том же состоянии и изменяет его не иначе как от встречи с другим". Второй закон: "Каждая материальная частица в отдельности стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой". Поэтому вместо того чтобы называть первый закон Ньютона, или закон инерции, законом Галилея – Ньютона, что и делают иногда в учебниках, или говорить, что закон инерции был открыт раньше Ньютона, следовало бы отметить то, что ранее Ньютона его достаточно точно сформулировал Декарт, но никак не Галилей. Правда, авторитет Галилея сделал свое дело и ошибки Галилея просто были забыты.

Инструменты